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ABSTRACT: Metropolitan areas worldwide display highly diverse microclimatic circumstances that are
influenced by a variety of morphologies, structures, materials (particularly urban surface properties), and
processes (mobility, industry, etc.). This diversity influences the intensity and extent of the urban heat island
effect (UHI) in different cities. UHI may be understood in terms of emerging divergence between micro-
climatic conditions in the city proper versus the rural environs. Significantly higher temperatures are
observed in the urban area as compared to the surrounding suburban and rural neighborhoods. A further rise
in the appearance and intensity of UHI phenomena is to be expected in the coming years due to the on-going
population increase in urban areas. Furthermore, the UHI effect is believed to be related to (and worsened by)
the climate change. Thereby, the rise of global temperatures is likely to affect not only the health of the urban
population (urban heat distress, pedestrian discomfort) but also the energy performance of the built
environment (higher outdoor air temperatures lead to a significant increase in buildings' energy use for
cooling). In this context, this paper presents the results of an on-going EU-supported research project, which
investigates the urban heat island phenomena in a number of urban regions in Central European countries
(Stuttgart, Warsaw, Prague, Padua, Ljubljana, Modena, and Budapest). Toward this end, we pursue a two-
fold approach. First detailed information regarding urban and rural climate in a 7-day period for each of the
participating cities was collected and analysed. The results show a considerable variance, which, if ignored,
would lead to major uncertainties in inferences made based on performance simulation. Secondly, long term
data on rural and urban climate was obtained for all participating cities and included in the analyses.

1 INTRODUCTION cities (Harlan et al. 2011). Additionally, higher air
temperatures have a direct effect on the energy use
Recently, a number of research efforts have been  due to increased deployment of air conditioning
initiated to better understand the variance in  (Akbari 2005).
microclimatic conditions due to factors such as In this context, this paper presents the results of
urbanization, presence and density of industrial or  an on-going research project that investigates the
commercial buildings, green areas, bodies of water,  urban heat island phenomena in the Central
etc. (Grimmond 2007, Alexandri 2007). The  European area (Mahdavi et al. 2013). Within the
geometry, spacing, and orientation of buildings and  framework of the aforementioned UHI project, we
surrounding open areas greatly influence the  collected a large set of data concerning the extent of
microclimate in the city (Kleerekoper et al. 2012).  the UHI effect in multiple cities in Central Europe.
Looking on the smaller scale, microclimate can vary ~ Analysis of the data reveals the extent of the UHI
significantly across an area consisting of even a few  effect and a considerable variance in its
streets. On a greater scale, this deviation is observed  manifestations.
in terms of significantly higher urban temperatures Toward this end, we pursued a two-fold
than that of the surrounding rural environment. This  approach. First, detailed information regarding
circumstance (see, for example, Voogt 2002) is  urban and rural climate in a 7-day period for each of
referred to as the urban heat island phenomenon  the participating cities was collected and analysed.
(UHI). It is usually quantified by the term Urban  The results show a considerable variance, which, if
Heat Island Intensity (A6), which is the difference  ignored, would lead, amongst other things, to major
between urban and background rural temperatures.  uncertainties in inferences made based on thermal
Furthermore, the UHI effect is thought as being  performance simulation. Secondly, long term data
directly related to (and worsened by) the climate  on rural and urban climate was obtained for all
change. Increase in average temperatures is believed  participating cities and included in the analyses.
to adversely affect the health of people living in
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2 URBAN HEAT ISLAND QUANTIFICATION

Numerous studies have been carried out discussing
and quantifying the UHI phenomenon (see, for
example, Arnfeld 2003, Blazejczyk 2006). Efforts
have been made to describe the characteristics and
patterns of UHI (Voogt 2002, Hart and Sailor 2007).
Observations have shown that the UHI phenomenon
shows different characteristics during different
seasons (Gaffin et al. 2008) and that is pronounced
differently during the night and the day (Oke 1981).
Furthermore, the intensity of urban heat islands is
believed to rise proportionally to the size and
population of the urban area (Oke 1972). More
recently, Gaffin et al. (2008) performed a detailed
spatial study of New York city’s current UHI and
concluded that summer and fall periods were
generally the strongest UHI seasons, consistent with
seasonal wind speed changes in the area.

The UHI most often refers to the increase of
urban air temperature when compared to rural.
Generally, heat island intensities are quantified in
the range of 1-3 K (Voogt 2002). Furthermore,
Voogt also noted that under certain atmospheric and
surface conditions, the maximum observed heat
island magnitudes can be as high as 12 K.

The UHI phenomenon has also been extensively
studied in terms of the effect on the urban
microclimate and energy use for heating and cooling
of buildings (Stewart and Oke 2012, Kolokotroni et
al. 2007). Furthermore, material properties of urban
surfaces can result in higher urban temperature
compared to that of rural area (Grimmond et al.
1991, Akbari et al. 2001). Taha (1997) examined the
impacts of surface albedo, evapotranspiration, and
anthropogenic heat emission on the near-surface
climate and found out that increases in urban albedo
or increase in vegetation in urban areas can reduce
air temperature up to 2 K.

3 METHODOLOGY

The definition, description, and quantification of the
UHI effect rely on a large body of both short-term
and long-term measurement results (Gaffin et al.
2008). In this context, we were particularly
interested in quantifying the frequency, magnitude,
and time-dependent (diurnal and nocturnal) UHI
intensity distribution in a course of a reference
week. Long-term development of urban and rural
temperatures was another point of interest.

The magnitude of the UHI effect can be
expressed, amongst others, in terms of Urban Heat

Island intensity (A©). This term denotes the
temperature  difference  (in  K)  between
simultaneously  measured urban and rural

temperatures. While there may be more detailed and
informative means of expressing the urban heat

island effect, for the purposes of presented analysis,
we operate with AO as a generic indicator.

The specific aim of this paper is to identify and
evaluate the extent of the UHI effect and its variance
in the broader geographical context of the
participating cities.

Table 1 includes some general information about
our research project's participating cities in terms of
area, population, latitude, longitude, and altitude.
Additional information concerning cities' location
and topology is provided in Table 2.

Table 1. Information about the participating cities.

City Area Population Latitude Longitude Altitude
[km?] [millions] range[m]
Budapest 525 174 47°30'N 19°3'E  90-529
Ljubljana 275 0.28 46°3'N 14°30'E 261-794
Modena 183 0.18 44°39'N 10°55'E 34
Padua 93 0.21 45°25'N 11°52'E 8-21
Prague 496 1.26 50°5'N 14°25'E 177-399
Stuttgart 207 0.60 48°46'N 9°10'E 207-548
Vienna 415 1.73 48° 12'N 16° 22'E  151-543
Warsaw 517 1.70 52°13'N 21°00'E 76-122

Table 2. Information about the urban topology.

City Topology

Vienna is located in north-eastern Austria, at the
eastern most extension of the Alps in the Vienna
Basin.

Vienna

Stuttgart's center lies in a Keuper sink and is
surrounded by hills. Stuttgart is spread across
several hills, valleys and parks.

Stuttgart

Padua is located at Bacchiglione River, 40 km
west of Venice and 29 km southeast of Vicenza.
The Brenta River, which once ran through the
city, still touches the northern districts. To the
city's south west lie the Euganaean Hills.

Padua

The Danube River divides Budapest into two
parts. On the left bank the Buda is located, with
over 20 hills within the territory of the capital, and
on the right bank the flat area of Pest is located
with its massive housing, as well as commercial
and industrial areas.

Budapest

Prague is situated on the Vltava river in the center

Prague of the Bohemian Basin.

Modena is bounded by the two rivers Secchia and
Panaro, both affluents of the Po River. The
Apennines ranges begin some 10 km from the
city, to the south.

Modena

Warsaw is located some 260 km from the Baltic
Sea and 300 km from the Carpathian Mountains.
Furthermore, Warsaw is located in the heartland of
the Masovian Plain.

Warsaw

Ljubljana is located in the Ljubljana Basin

Ljubljana between the Alps and the Karst Plateau.
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The assessment of current UHI intensity in
observed urban areas has been derived from data
sets in a course of a reference week. The reference
week was chosen by each participating city
independently, in order to provide the most reliable
input information. Each participating city provided
data (including air temperature, wind speed, and
precipitation) from two representative weather
stations (one urban and one rural). Data was
recorded on hourly basis. These data sets needed to
be suitable for the UHI analysis. This presumed that
the air temperatures during the whole period should
be considerably high, while the wind speed should
preferably be below 5 m/s for most of the time.

From the hourly values of UHI intensity the
cumulative frequency distribution for the reference
week period was calculated. Moreover, the week-
long data for each city was processed into mean
hourly urban temperature and UHI values of a
reference day.

To obtain a long-term impression of the urban
and rural temperature development in the
participating cities, mean annual (urban and rural)
temperatures and UHI values were derived for a
period of 30 years. With two exceptions (Modena,
Warsaw), the record set was obtained from the same
two representative weather stations (urban and rural)
used for the short-term analysis.

Table 3 provided an overview of the time periods
used for both the short-term and the long-term
analyses.

Table 3. Overview for the data sets used for the analysis.

Long-term Climate Data

Reference
Week URBAN RURAL

STATION STATION
Budapest 20-26.8.2011  2000-2011  2000-2011
':”b”a” 20-26.82011  1980-2011 1980-2011
Modena  20-26.8.2011  1980-2010  1980-2009
Padua 18-2482011  1994-2011  1994-2011
Prague  8-147.2010  1980-2011  1980-2011
Stuttgart ~ 20-26.82011  1981-2011  1980-2011
Vienna  20-26.7.2011  1994-2011  1994-2011
Warsaw  9-15.6.2008  1980-2011  1980-2011
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4 RESULTS

4.1 Short-term (reference week) analyses

Figure 1 shows the cumulative frequency
distribution of UHI values for the participating cities
for the reference week. Figures 2 and 3 show, for a
reference summer day (representing the reference
week), the hourly values of urban temperature and
the mean hourly UHI values respectively.
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Figure 1. Cumulative frequency distribution of UHI intensity
for a one week summer period.
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Figure 2. Mean hourly urban temperature for a reference
summer day.

——VIENNA
—— STUTTGART
TR PADUA
— - ~BUDAPEST
e~ PRAGUE
MODENA
WARSAW
LIUBLIANA

ENENC N RN

w

UHI intensity [K]

' '
N P O P N

01:00
03:00
05:00
07:00
09:00
11:00
19:00
21:00
23:00

Figure 3. Mean hourly UHI intensity distribution for a

reference summer day.



4.2 Long-term analyses

Figures 4 and 5 show for the participating cities the
(mean annual) urban and rural temperatures
respectively over a period of 30 years. Figure 6
shows the long-term UHI intensity trend over the
same period.
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Figure 4. Development of (mean annual) urban temperatures
over a period of 30 years.
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Figure 5. Development of (mean annual) rural temperatures
over a period of 30 years.
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Figure 6. Long-term development of the UHI intensity over a
period of 30 years.
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5 DISCUSSION

The reference week data clearly demonstrate the
existence and significant magnitude of the UHI
effect in participating cities, especially during the
night hours (Figures 1 and 3). However, the time-
dependent UHI patterns vary considerably across the
participating cities. In Warsaw, for example, UHI
intensity level ranges from around 2 K during
daytime to almost 7 K during the night, while in
Stuttgart levels are rather steady, ranging from 1 K
to 2 K. The UHI pattern differences are also visible
in the cumulative frequency distribution curves of
Figure 1. In this Figure, a shift to the right denotes a
larger UHI magnitude.

The historical temperature records suggest an
upward trend concerning both urban and rural
temperatures (see Figures 4 and 5). Consistent with
regional and global temperature trends, a steady
increase in rural temperatures of up to about 2.5 K
can be observed in all selected cities (with the
exception of Budapest, for which data was available
only for a rather short period).

In the same 30-years period, the mean annual
urban temperature rose somewhere between 1 K
(Stuttgart) and 3 K (Warsaw). A number of factors
may have contributed to this trend, namely increase
in population, energy use, anthropogenic heat
production, and physical changes in the urban
environment (e.g., more high-rise buildings, increase
in impervious surfaces).

Note that, while both rural and urban
temperatures have been increasing, the value of the
UHI intensity has been rather steady. Our data
suggest increasing UHI intensity trends in Warsaw
and Ljubljana, whereas a slight decrease can be
discerned from Stuttgart and Prague data (see Figure
7).
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6 CONCLUSION

We presented the initial results of an EU-supported
project concerned with the extent of the UHI
phenomena in a number of Central European cities.
The objectives of this project are to provide a
common understanding of the UHI effects and to
conceive and evaluate appropriate mitigation and
adaptation measures.

We presented both short-term and long-term data
with regard to urban and rural temperatures in the
participating cities (Stuttgart, Warsaw, Prague,
Padua, Ljubljana, Modena, Vienna, and Budapest).
The analysis results demonstrate the existence and
significant magnitude of the UHI effect in all
participating cities. A time-dependent (diurnal and
nocturnal) pattern could be observed implying larger
UHI intensities during the night hours. However, the
hourly based observations show a significant
variation in UHI intensity in different cities,
especially in terms of peak values. These results
imply the need for further studies concerning UHI as
a variable phenomenon over space and time and
especially in a broader geographical context.

Finally, the findings stress the importance of
assessment and modeling approaches that would
establish a link between UHI intensity and salient
urban variables such as urban density and
morphology, block layout, canyon geometry, surface
properties, vegetation, bodies of water industrial
sites, transportation systems and infrastructures. The
development of a systematic UHI assessment and
modeling framework (Mahdavi et al. 2013)
represents a critical component of our ongoing
project.
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